注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

陶山教研的博客

要做就做到最好。

 
 
 

日志

 
 

侯红兵:寓理于算的思想容易被忽视  

2016-11-28 08:55:32|  分类: 教研沙龙 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

侯红兵:寓理于算的思想容易被忽视

小学里主要学计算,不讲推理。但是,计算和推理是相通的。

中国古代数学主要是找寻解决各类问题的计算方法,不像古希腊讲究推理论证。但是,计算要有方法,这方法里就体现了推理,即寓理于算的思想。

数学活动中的画图和推理,归根结底都是计算。推理是抽象的计算,计算是具体的推理,图形是推理和计算直观的模型。我们可以举些例子,让学生慢慢体会到所谓推理,本来是计算;到了熟能生巧的程度,计算过程可以省略了,还可以得到同样的结果,就成了推理了。有的人认为几何推理很难,学几何一定要先学实验几何。其实,实验和推理不一定要截然分开。早期学实验几何阶段可以推理,后期学会推理时也需要实验。所谓实验,无非是观察和计算。“对顶角相等”这样简单的几何命题,实际上就是通过一个算式证出来的,这里的推理证明就是计算。

要把计算提升为推理,就要用一般的文字代替特殊的数字,再用字母代替文字。不要怕让学生早点接触字母运算。讲到“长方形的面积=长×宽”的时候,不妨告诉学生,这个公式可以用字母表示成M=C×K。这里用了面积、长、宽的汉语拼音,学生很容易理解。再说明用别的字母也可以。为什么说这样能把计算提升为推理呢?看一个简单的例子。设一个三角形a边上的高为h,b边上的高为g,根据三角形面积公式,就知道a×h=b×g;如果a=b,h=g。这就推出了一条规律:如果三角形的两条边相等,则此两边上的高也相等。也就是证明了一条定理。这种证明方法比利用全等三角形简单明了。

数学试卷上看到这样一道题:“正方形的面积是5平方分米,求这个正方形的内切圆的面积。”表面上看,这个问题小学生解决不了,因为要求圆的面积,一般要知道圆的半径,这题中就需要先知道正方形的边长,而正方形的面积是5平方分米,边长就是!5分米,小学生没有学过开方,似乎没有办法进行计算。而实际上,正方形的面积是它边长的平方,圆的面积用到的是半径的平方,并不一定要知道半径,知道半径的平方就行了,而此题中半径的平方是直径平方(即正方形面积)的四分之一,所以是能够解决的。但有很多学生解决不了,而告诉他们答案后,学生往往觉得非常简单。这是为什么呢?这就说明学生不能把计算转化为推理。引导学生认识计算和推理的关系,从计算发展到推理,是很重要的。这里有很值得研究的问题。

  评论这张
 
阅读(14)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017